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Symmetry of the Poincaré map and its influence on bifurcations
in a vibro-impact system

Y. Yue�, J.H. Xie, H.D. Xu

State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Received 6 February 2007; received in revised form 14 March 2008; accepted 30 November 2008

Handling Editor: L.G. Tham
Abstract

Symmetric period n�2 motion of a three-degree-of-freedom (3-dof) vibro-impact system with symmetric rigid

constraints is considered. The Poincarémap of the system is established, and the symmetric fixed point of the Poincarémap

corresponds to the associated symmetric period n�2 motion. It is shown that the Poincaré map exhibits some symmetry

property, and can be expressed as the second iteration of another unsymmetric implicit map. The symmetry of the Poincare
map influence bifurcation behaviors in vibro-impact system significantly, and suppresses not only period-doubling

bifurcation, but also Hopf–flip bifurcation and pitchfork–flip bifurcation. Based on the second iteration of another

unsymmetric implicit map, the normal forms in the case of Hopf–Hopf bifurcation and Hopf bifurcation satisfying 1:2

resonant conditions are obtained. By numerical simulation, general Hopf bifurcation, Hopf–Hopf bifurcation and Hopf

bifurcation satisfying 1:2 resonant conditions of the symmetric period n�2 motion are represented. However, period-

doubling bifurcation, Hopf–flip and pitchfork–flip bifurcation have not been obtained, which reflects upon the effect of the

symmetry property on possible bifurcations. It is interesting that the system can exhibit both the characteristic of 1:2

resonance and that of torus T2 under some parameter combination, and 2�T1 torus is also obtained.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the existence of impacts, the vibro-impact system is discontinuous and strongly nonlinear, such
as hammer-like devices, rotor-casing dynamical systems, heat exchangers, fuel elements of nuclear reactor,
gears, piping systems, wheel–rail interaction of high speed railway coaches. Researches into the dynamic
behavior of vibro-impact systems have important significance in optimization design of machinery and noise
suppression. Hence, the complication of the dynamics of vibro-impact system has received great attention.
Early studies on vibro-impact system mainly focused on single-degree-of-freedom system, see Refs. [1–10].
Budd and Dux [8] proved that the periodic motion of the single-degree-of-freedom vibro-impact system
cannot have Hopf bifurcation. In recent years, many researchers investigated some two- and three-degree of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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freedom (3-dof) of vibro-impact systems, and found that these vibro-impact systems can exhibit rich dynamic
behavior, and have various bifurcations, such as period-doubling bifurcation [11,12], Hopf bifurcation [13,14].
Besides, there are some studies on calculation of Lyapunov exponents [15,16], controlling chaos [17,18] and
rising phenomena and the multi-sliding bifurcation [19] in systems with impacts. Dynamics of vibro-impact
system in two cases of resonance (1:3 and 1:4 resonance) was also studied by Ding and Xie [20]. Luo and Chen
[21] presented an idealized, piecewise linear system to model the vibration of gear transmission systems, and
developed the analytical predictions of periodic motion based on the mapping structures. It should be
mentioned that codimension between two bifurcation of multi-degree-of-freedom vibro-impact systems has
attracted more and more attention, see Refs. [22–27]. Xie and Ding [25] considered Hopf–Hopf bifurcation of
a 3-dof vibro-impact system. When two pairs of complex conjugate eigenvalues of the Jacobian matrix of the
map at fixed point cross the unit circle simultaneously, the six-dimensional Poincaré map was reduced to its
four-dimensional normal form by the center manifold and the normal form methods. It was shown that there
are torus T1 and T2 bifurcation under some parameter combinations. In Ref. [27], an inertial shaker as a
vibratory system with impact was considered. Dynamics of the system was studied with special attention to
interaction of Hopf and period doubling bifurcations. The four-dimensional map was reduced to a three-
dimensional normal form by the center manifold theorem and the theory of normal forms. It was shown that
there exist curve doubling bifurcation, Hopf bifurcation of 2–2 fixed points as well as period doubling
bifurcation and Hopf bifurcation of 1–1 fixed points near the critical point.

A great deal of issues on vibro-impact dynamics interest many researchers greatly, but little attention has
been paid to the symmetry characteristic of the Poincaré map and its influence on possible bifurcations in
vibro-impact systems. In Ref. [28], we considered a two-degree-of-freedom (2-dof) vibro-impact system with
symmetric rigid constraints, and described the symmetry of Poincaré map. It was shown that if the Jacobian
matrix of the Poincaré map at the fixed point has a real eigenvalue crossing the unit circle at +1, the
symmetric fixed point will bifurcate into two antisymmetric fixed points which have the same stability via
pitchfork bifurcation. While the control parameter changes continuously, the two antisymmetric fixed points
will give birth to two synchronous bifurcation sequences.

In this paper, we expand the symmetry of Poincaré map of the 2-dof vibro-impact system discussed in
Ref. [28] to a 3-dof vibro-impact system with symmetric rigid constraints, and pay more attention to the effect
of the symmetry of Poincaré map on possible bifurcations. Based on the second iteration of another
unsymmetric map, we obtain the normal forms of Hopf–Hopf bifurcation and Hopf bifurcation satisfying 1:2
resonance conditions. It is interesting that the system can exhibit both the characteristic of 1:2 resonance and
that of torus T2 under some parameter combination.
2. Mechanical model

A 3-dof system with symmetric rigid constraints is shown in Fig. 1. The system has three masses M1, M2 and
M3. M2 and M3 are connected to rigid planes via two linear springs K2 and K3, and two linear viscous dashpots
Fig. 1. A three-degree-of-freedom vibro-impact system with symmetric rigid constraints.
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C2 and C3, respectively. M1 is connected to M2 via linear spring K1 and linear viscous dashpot C1. The
excitations on three masses are harmonic with amplitudes P1, P2 and P3. For small forcing amplitudes the
system undergoes simple oscillations and behaves as a linear system. However, as the amplitudes increased,
M3 begins to collide with two stops of M2, and the system becomes discontinuous and strongly nonlinear. The
impact is described by a coefficient of restitution R. It is assumed that the duration of impact is negligible
compared to the period of the force, and the friction between M3 and M2 is negligible, too. C1 and C2 are
assumed as proportional damping.

Between any two consecutive impacts, the non-dimensional differential equations of motion are given by

um1 €x1 þ 2uc1zð _x1 � _x2Þ þ uk1ðx1 � x2Þ ¼ uf 1f sinðotþ tÞ;

um2 €x2 þ 2ðuc1 þ uc2Þz _x2 � 2uc1z _x1 þ ðuk1 þ uk2Þx2 � uk1x1 ¼ uf 2f sinðotþ tÞ;

um3 €x3 þ 2uc3z _x3 þ uk3x3 ¼ uf 3f sinðotþ tÞ;

9>=
>; (1)

where the non-dimensional variables and parameters are t ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3=M3

p
, z ¼ C3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K3M3

p
, o ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3=K3

p
,

f ¼ P3=P0, umi ¼Mi=M3, uki ¼ Ki=K3; uci ¼ Ci=C3; ufi ¼ Pi=P3, xi ¼ X iK3=P0; i ¼ 1,2,3, and P0 ¼ jP1jþ

jP2j þ jP3j. The phase angle t is used only to make a suitable choice for the origin of time in the calculation.
When M3 impacts the left and the right stops of M2, the non-dimensional displacements of two masses

satisfy jx2 � x3j ¼ h, where h ¼ K3H=P0. After each impact, the velocities of M2 and M3 change according to
the impact law:

_x2þ ¼ m1 _x2� þ n1 _x3�; _x3þ ¼ m2 _x2� þ n2 _x3�, (2)

where m1 ¼ ðum2 � RÞ=ð1þ um2Þ, n1 ¼ ð1þ RÞ=ð1þ um2Þ, m2 ¼ ðum2ð1þ RÞÞ=ð1þ um2Þ, n2 ¼ ð1� um2RÞ=
ð1þ um2Þ.

In Eqs. (1) and (2), a dot ( � ) denotes differentiation with respect to the non-dimensional time t. _xi� and _xiþ

represent the non-dimensional velocities of Mi before and after impacting, respectively.
The first and the second differential equations of Eq. (1) are coupling, and the eigenfrequencies can be

solved as o1 and o2. Taking w as the canonical model matrix, and making the change of variables
½x1;x2�

T ¼ wx, the first and the second equations of Eq. (1) become

I€xþ C_xþ Kx ¼ F sinðotþ tÞ (3)

where C ¼ 2zpK ¼ diag½2zpo2
1; 2zpo2

2�, F ¼ ½f 1; f 2�
T ¼ wTPk, Pk ¼ ½uf 1f ; uf 2f �

T.
Let fkj denotes the element of w, the general solution of Eq. (1) is given by

x1ðtÞ ¼
P2
j¼1

f1jðe
�Zj tðaj cosðodjtÞ þ bj sinðodjtÞÞ þ Aj sinðotþ tÞ þ Bj cosðotþ tÞÞ;

x2ðtÞ ¼
P2
j¼1

f2jðe
�Zj tðaj cosðodjtÞ þ bj sinðodjtÞÞ þ Aj sinðotþ tÞ þ Bj cosðotþ tÞÞ;

x3ðtÞ ¼ e�Z3tða3 cosðod3tÞ þ b3 sinðod3tÞÞ þ A3 sinðotþ tÞ þ B3 cosðotþ tÞ;

9>>>>>>=
>>>>>>;

(4)

where Zj ¼ zpo2
j , odj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

j � Z2j
q

, j ¼ (1,2), Z3 ¼ z, od3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z23

q
, and ai and bi are integration constants,

Ai and Bi are amplitude constants.

3. Symmetric period n�2 motion

Firstly, we give the definition of symmetric period n�2 motion, according to which the symmetric period
n�2 motion can be obtained analytically.

Definition 1. (Symmetric period n�2 motion). Let the origin of the time coordinate is displaced to the moment
that M3 impacts the right stop of M2 (t ¼ t0 ¼ 0). Subsequently, at the moment t ¼ t1 ¼ np=o (n is an
odd number), M3 impacts the left stop. At the moment t ¼ t2 ¼ 2np=o, M3 impacts the right stop once again.
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The periodic motion will be called symmetric period n�2 motion if the following relationships are satisfied:

xiðt1Þ ¼ �xiðt0Þ; _xiþðt1Þ ¼ � _xiþðt0Þ, (5.1)

xiðt2Þ ¼ xiðt0Þ; _xiþðt2Þ ¼ _xiþðt0Þ, (5.2)

where i ¼ 1,2,3, and xiðtjÞ and _xiþðtjÞ represent the non-dimensional displacements and velocities of Mi after
impacting at the moment tj (j ¼ 0,1,2), respectively.

In other words, after M3 impacts the right and the left stops, the associated state coordinates are equal in
absolute value and opposite in direction. According to the definition, we can easily obtain the following
proposition on the existence condition of symmetric period n�2 motion.

Proposition 2. (Existence of the symmetric period n�2 motion). If there are initial conditions t ¼ t0, xið0Þ ¼ xi0,
_xiþð0Þ ¼ yi0, which result in

xið0Þ ¼ �xiðt1Þ;

_xiþð0Þ ¼ � _xiþðt1Þ;

x2ð0Þ � x3ð0Þ ¼ �h;

x2ðt1Þ � x3ðt1Þ ¼ þh;

9>>>>=
>>>>;

(6)

then the symmetric period n�2 motion of the system exists, and can be expressed by

xiðtÞ ¼
xiðtÞ; t 2 ½0; t1�

�xiðt� t1Þ; t 2 ½t1; t2�

(
; i ¼ 1; 2; 3. (7)

Inserting the general solutions (4) into the boundary conditions (6), after simplification, we obtain

maa1 þmc cos t0 þms sin t0 þmh ¼ 0;

naa1 þ nc cos t0 þ ns sin t0 þ nh ¼ 0:

)
(8)

Thus, the phase angle t0 and the integration constants can be solved (see Appendix A). Substituting them into
the general solution (4), and considering that impacts change the integration constants, we obtain the
symmetric period n�2 solution:

xiðtÞ ¼

P2
j¼1

fij ½e
�Zj tðaji cosðodjtÞ þ bji sinðodjtÞÞ þ Aj sinðotþ t0Þ

þBj cosðotþ t0Þ�; t 2 ½0; t1�;P2
j¼1

fij ½e
�Zjðt�t1Þðaji cosðodjðt� t1ÞÞ þ bji sinðodjðt� t1ÞÞÞ þ Aj sinðotþ t0Þ

þBj cosðotþ t0Þ�; t 2 ½t1; t2�;

8>>>>>>>>><
>>>>>>>>>:

i ¼ 1; 2, (9.1)

x3ðtÞ ¼
e�Z3t½a31 cosðod3tÞ þ b31 sinðod3tÞ� þ A3 sinðotþ t0Þ þ B3 cosðotþ t0Þ; t 2 ½0; t1�;

e�Z3ðt�t1Þ½a32 cosðod3ðt� t1ÞÞ þ b32 sinðod3ðt� t1ÞÞ� þ A3 sinðotþ t0Þ þ B3 cosðotþ t0Þ; t 2 ½t1; t2�;

(

(9.2)

where ajk (j ¼ 1,2,3; k ¼ 1,2) are the integration constants determined by the initial conditions after impacting
(see Appendix B).
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4. Poincaré map and its symmetry

Let yi ¼ _xi denotes the velocity of Mi, Eq. (1) can be rewritten as

_x1 ¼ y1;

_y1 ¼
1

um1
½�uk1x1 þ uk1x2 � 2uc1zy1 þ 2uc1zy2 þ uf 1f sinðotþ tÞ�;

_x2 ¼ y2;

_y2 ¼
1

um2
½uk1x1 � ðuk1 þ uk2Þx2 þ 2uc1zy1 � 2ðuc1 þ uc2Þzy2 þ uf 2f sinðotþ tÞ�;

_x3 ¼ y3;

_y3 ¼
1

um3
½�uk3x3 � 2uc3zy3 þ uf 3f sinðotþ tÞ�:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(10)

Equivalently:

_X ¼ FðX; tÞ, (11)

where X ¼ ðx1; y1;x2; y2;x3; y3Þ
T, and we have

F X; tþ
2p
o

� �
¼ FðX; tÞ (12)

and

F �X; tþ
p
o

� �
¼ �FðX; tÞ. (13)

The phase space of the vibro-impact system is

R6 � S1 ¼ fðx1; y1;x2; y2;x3; y3; tÞjðx1; y1;x2; y2; x3; y3Þ 2 R6; t 2 S1g, (14)

where S1 is the 2p=o-circle. And the Poincaré section is chosen as

P0 ¼ fðx1; y1; x2; y2;x3; y3; tÞ 2 R6 � S1jx2 � x3 ¼ �hg. (15)

Subsequently, we define a transformation

R : ðx1; y1; x2; y2;x3; y3; tÞ/ �x1;�y1;�x2;�y2;�x3;�y3; tþ
np
o

� �
(16)

and a section:

P1 ¼ fðx1; y1; x2; y2;x3; y3; tÞ 2 R6 � S1jx2 � x3 ¼ þhg. (17)

Now it should be noted that P0 and P1 are chosen at the moment after impacting at the right and the left
stops, respectively. Hence, in section P0 and P1, we have _yi ¼ _yiþ.

Due to t 2 S1, we have

R2 ¼ I (18)

where I is the identity transformation. Let ðx1i; y1i; x2i; y2i;x3i; y3i; tiÞ
T denote the coordinates vector of point Xi

(i ¼ 1,2). According to Eqs. (13) and (16), we obtain

RFðXÞ ¼ FðRXÞ. (19)

Lemma 3. (Yue and Xie [28]). Let XðX0; tÞðt ¼ t0 þ DtÞ be the solution of Eq. (10) which starts at the point

X0 2 P0 between two consecutive impacts ðDt 2 ½0; np=oÞ, and XðX1; tþ np=oÞ be the solution of Eq. (10) which
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Fig. 2. Schematic diagram of Q1 and Q2.
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starts at the point X1 ¼ RX0 2 P1, we have

RXðX0; t0 þ DtÞ ¼ XðX1; t1 þ DtÞ (20)

Supposing that it takes Dt1 time for the solution which starts at X0 2 P0 to reach the section P1, and it takes
Dt2 time for the solution which starts at X1 2 P1 to reach the section P0, we can obtain Dt1 ¼ Dt2 [28].

Due to jx2 � x3j ¼ h when M3 impacts the left and the right stops of M2, we choose ðx1; y1;x2; y2; y3; tÞ as the
coordinates of P0 and P1, and delete the coordinates x3. As shown in Fig. 2, definingQ1 : P0! P1 (including
an impact) and Q1ðX0Þ ¼ X00, where

X0 ¼ ðx10; y10;x20; y20; y30; t0Þ 2 P0;

X00 ¼ ðx
0
10; y

0
10;x

0
20; y

0
20; y

0
30; t
0
0Þ 2 P1;

)
(21)

we have

x010 ¼ x1ðX0; t0 þ Dt1Þ;

y010 ¼ y1ðX0; t0 þ Dt1Þ;

x020 ¼ x2ðX0; t0 þ Dt1Þ;

y020 ¼ m1y2ðX0; t0 þ Dt1Þ þ n1y3ðX0; t0 þ Dt1Þ;

y030 ¼ m2y2ðX0; t0 þ Dt1Þ þ n2y3ðX0; t0 þ Dt1Þ;

t00 ¼ t0 þ Dt1:

9>>>>>>>>>=
>>>>>>>>>;

(22)

Defining Q2 : P1 ! P0 (including an impact) and Q2ðX1Þ ¼ X01, where

X1 ¼ ðx11; y11;x21; y21; y31; t1Þ 2 P1;

X01 ¼ ðx
0
11; y

0
11;x

0
21; y

0
21; y

0
31; t
0
1Þ 2 P0;

)
(23)

we have

x011 ¼ x1ðX1; t1 þ Dt2Þ;

y011 ¼ y1ðX1; t1 þ Dt2Þ;

x021 ¼ x2ðX1; t1 þ Dt2Þ;

y021 ¼ m1y2ðX1; t1 þ Dt2Þ þ n1y3ðX1; t1 þ Dt2Þ;

y031 ¼ m2y2ðX1; t1 þ Dt2Þ þ n2y3ðX1; t1 þ Dt2Þ;

t01 ¼ t1 þ Dt2:

9>>>>>>>>>=
>>>>>>>>>;

(24)

Thus, as shown in Fig. 2, the Poincaré map of the vibro-impact system can be established as

P ¼ Q2 �Q1; P : P0/P0. (25)
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Lemma 4. (Yue and Xie [28]). The Poincaré map of the 3-dof vibro-impact system has the symmetry property:

R �Q1 ¼ Q2 � R. (26)

Proof. According to Eq. (20), and considering Dt1 ¼ Dt2, for X0 2 P1, we have

R �Q1ðX0Þ ¼ Rðx1ðX0; t0 þ Dt1Þ; y1ðX0; t0 þ Dt1Þ;x2ðX0; t0 þ Dt1Þ;m1y2ðX0; t0 þ Dt1Þ

þ n1y3ðX0; t0 þ Dt1Þ;m2y2ðX0; t0 þ Dt1Þ þ n2y3ðX0; t0 þ Dt1Þ; t0 þ Dt1Þ

¼ ðx1ðX1; t1 þ Dt1Þ; y1ðX1; t1 þ Dt1Þ;x2ðX1; t1 þ Dt1Þ;m1y2ðX1; t1 þ Dt1Þ

þ n1y3ðX1; t1 þ Dt1Þ;m2y2ðX1; t1 þ Dt1Þ þ n2y3ðX1; t1 þ Dt1Þ; t1 þ Dt1Þ

¼ ðx011; y
0
11;x

0
21; y

0
21; y

0
31; t
0
1Þ

¼ X01. (27)

However, as shown in Fig. 2,

Q2RðX0Þ ¼ Q2ðX1Þ ¼ X01, (28)

such that Eq. (26) is proved.
Eq. (26) can be rewritten as

Q2 ¼ R �Q1 � R
�1. (29)

Introducing a map

Qg ¼ R�1 �Q1, (30)

we obtain the Poincaré map as below:

P ¼ Q2 �Q1 ¼ R �Q1 � R
�1 �Q1 ¼ R2 � ðR�1 �Q1Þ

2
¼ Q2

g . (31)

That is, the Poincaré map P is the second iteration of Qg, where Qg has no symmetry. Clearly, Eq. (31) implies
the symmetry property of the Poincaré map of the vibro-impact system. It should be mentioned that since Dt1
and Dt2 are determined by equations x2 � x3 ¼ þh and x2 � x3 ¼ �h implicitly, Q1,Q2, Qg and P are all
implicit maps. &

5. Effect of the symmetry of the Poincaré map on possible bifurcations

If X0 2 P0 satisfies PðX0Þ ¼ X0, then X0 is a fixed point of the Poincaré map P, corresponding to the
associated periodic motion of the system.

Definition 5. (Symmetric fixed point). If the fixed point X0 satisfies

X0 ¼ QgðX0Þ, (32)

then X0 is said to be a symmetric fixed point (or symmetric period n�2 fixed point) of the Poincaré map P,
corresponding to the associated symmetric period n�2 motion of the system.

Since the symmetric period n�2 motion of the vibro-impact system corresponds to the symmetric fixed
point of the Poincaré map, we can investigate bifurcations of the symmetric period n�2 motion by researching
into bifurcations of the associated symmetric fixed point. The eigenvalues of the Jacobi matrix DPðX0Þ

determine the stability of the symmetric fixed point X0 of the Poincarémap. Suppose that all the eigenvalues of
DPðX0Þ lie inside the unit circle, the symmetric fixed point X0 is stable. If there are some eigenvalues crossing
the unit circle, various bifurcations take place [29]. When there is a real eigenvalue crossing the unit circle at
+1, the symmetric fixed point changes its stability, and bifurcates into a pair of antisymmetric fixed points
which have the same stability via pitchfork bifurcation [28]. If there is a pair of complex conjugate eigenvalues
and a real eigenvalue �1 crossing the unit circle simultaneously, Hopf–flip bifurcation occurs. If there are two
pairs of complex conjugate eigenvalues escaping from the unit circle simultaneously, Hopf–Hopf bifurcation
takes place.



ARTICLE IN PRESS
Y. Yue et al. / Journal of Sound and Vibration 323 (2009) 292–312 299
The method of computing DPðX0Þ is similar to that shown in Ref. [28]. The Poincaré map P is a
composition of following four sub-maps: (I) P1: The map from the instant after impacting at the right stop
(t ¼ t0) to the instant before impacting at the left stop (t ¼ t1); (II) P2: The map of impacting at the left stop
(t ¼ t1); (III) P3: The map from the instant after impacting at the left stop (t ¼ t1) to the instant before
impacting at the right stop (t ¼ t2); (IV) P4: The map of impacting at the right stop (t ¼ t2). Hence, the
Poincaré map can be expressed as: P ¼ P4 � P3 � P2 � P1, and its Jacobi matrix can be computed as:
DP ¼ DP4DP3DP2DP1, where DPi is the linearized matrix of sub-maps Pi. Let DP1 ¼ ½dij�6�6, we show the
entries of the matrix DP1 in Appendix C. It should be mentioned that since P is an implicit map, the Jacobi
matrix DPðX0Þ is calculated according to implicit function theorem.

Theorem 6. For the symmetric fixed point, or the symmetric period n�2 motion, the symmetry property of the

Poincaré map suppresses not only codimension-1 period-doubling bifurcation, but also Hopf– flip bifurcation and

pitchfork– flip bifurcation completely.

Proof. Let DP and DQg be the Jacobian matrices of P and Qg evaluated at the symmetric fixed point X0,
respectively. Then Eq. (31) implies

DP ¼ ðDQgÞ
2. (33)

First we consider codimension-1 bifurcation of X0. If and only if DQg has a simple real eigenvalue l̃, the
Jacobian matrix DP has a simple real eigenvalue l ¼ l̃

2
40. Therefore, �1 cannot be the eigenvalue of DP,

which implies that period-doubling bifurcation cannot occur. That is, the symmetry of the Poincaré map
suppresses codimension-1 period-doubling bifurcation. Second, let us discuss codimension-2 bifurcations of
the symmetric fixed point X0. Since DP cannot have single real eigenvalue �1, the symmetric fixed point X0

cannot have Hopf–flip bifurcation and pitchfork–flip bifurcation. Here it should be noted that DP may have a
double real eigenvalue �1. &

To sum up, for the symmetric fixed point, or the symmetric period n�2 motion, the symmetry of the
Poincarémap suppresses codimension-1 period-doubling bifurcation, Hopf–flip bifurcation and pitchfork–flip
bifurcation completely, which gives Theorem 7.

6. Normal forms near two kinds of codimension-two bifurcation points

For the symmetric vibro-impact system with given parameters, let l ¼ e�iy ¼ cos y� i sin y be the
eigenvalue of DP, and l̃ ¼ e�iỹ ¼ cos ỹ� i sin ỹ be the eigenvalue of DQg, where the angle y (or ỹ ) denotes
the azimuth that l (or l̃) crosses the unit circle. Since DP ¼ ðDQgÞ

2, we have

l ¼ l̃
2
, (34)

and

y ¼ 2ỹ. (35)

Now we discuss as follows. (I) If Qg has a pair of complex conjugate eigenvalues escaping from the unit
circle, then P has also a pair of complex conjugate eigenvalues escaping from the unit circle, and vise versa.
Hence, in general case (that is, P and Qg satisfy nonresonant conditions at the same time), codimension one
Hopf bifurcation of Qg corresponds to codimension one Hopf bifurcation of P, and Hopf–Hopf bifurcation of
Qg corresponds to Hopf–Hopf bifurcation of P. (II) IfQg has a real eigenvalue crossing the unit circle from the
point (�1,0) (i.e., ỹ ¼ p), then P has a real eigenvalue crossing the unit circle from the point (+1,0) (i.e.,
y ¼ 2p), and vise versa. Therefore, codimension one period-doubling bifurcation of Qg corresponds to
codimension one pitchfork bifurcation of P, and Hopf–flip bifurcation of Qg corresponds to Hopf–pitchfork
bifurcation of P. (III) If Qg has a pairs of complex conjugate eigenvalues crossing the unit circle near the point
(0,i) (i.e., ỹ � p=2), then P has a pairs of complex conjugate eigenvalues crossing the unit circle near the point
(�1,0) (i.e., y � p), and vise versa. Thus, Hopf bifurcation of Qg satisfying 1:4 resonant conditions
corresponds to Hopf bifurcation of P satisfying 1:2 resonant conditions. The contrast of possible bifurcation
between the map P and the map Qg is listed in Table 1.
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Table 1

The contrast of bifurcation types between the map P and the map Qg.

The map Qg The map P

General Hopf bifurcation General Hopf bifurcation

Period-doubling bifurcation Pitchfork bifurcation

Hopf–Hopf bifurcation Hopf–Hopf bifurcation

Hopf–flip bifurcation Hopf–pitchfork bifurcation

Hopf bifurcation satisfying 1:4 resonant conditions Hopf bifurcation satisfying 1:2 resonant conditions

Y. Yue et al. / Journal of Sound and Vibration 323 (2009) 292–312300
In this section, we consider Hopf–Hopf bifurcation and Hopf bifurcation satisfying 1:2 resonant conditions
of the map P. Let the bifurcation parameters be ðm1;m2Þ

T
¼ m. For some neighborhood of the critical point

mc ¼ ðm1c;m2cÞ
T, assume that the symmetric fixed point of the map P is X0 ¼ ðx10; y10;x20; y20; y30; t0Þ

T. If the
coordinates origin is transferred to this symmetric fixed point, then the symmetric fixed point is
ð0; 0; 0; 0; 0; 0ÞT ¼ 0. Adding a initial perturbation DX ¼ ðDx10;Dy10;Dx20;Dy20;Dy30;Dt0Þ

T to this symmetric
fixed point, the perturbed map of P is

DX0 ¼ PðDXÞ, (36)

Under this coordinates transformation, ð0; 0; 0; 0; 0; 0ÞT ¼ 0 is also the symmetric fixed point of the map Qg,
and the perturbed map of Qg is

DX0 ¼ QgðDXÞ, (37)

The following analysis is based on the above two perturbed maps. For convenience, Eqs. (36) and (37) are still
written as X0 ¼ PðXÞ and X0 ¼ QgðXÞ, respectively. The method of establishing the perturbed map in vibro-
impact system is referred to Ref. [13].

6.1. Hopf– Hopf bifurcation

Since Hopf–Hopf bifurcation ofQg corresponds to that of P, then firstly we consider the normal form of the
map Qg near Hopf–Hopf bifurcation point. If the Jacobi matrix DQgðm; 0Þ of Qg at m ¼ mc satisfy

(C.1) DQgðm; 0Þ has two pairs of complex conjugate eigenvalues on the unit circle: l̃0; l̃0 ¼ e�iỹ0 ,

l̃1; l̃1 ¼ e�iỹ1 , and all other eigenvalues of DQgðm; 0Þ lie in the unit circle;

(C.2) Degenerate eigenvalues l0 and l1 satisfy non-resonant conditions: m0ỹ0=2pþm1ỹ1=2p 2 Z and have
no solution for jm1j þ jm2joN, where m0;m1 2 Z, and N is a sufficiently large integer, then according to the
center manifold and the normal form methods, the normal form of the map Qg can be given as [25,26]

z00 ¼ l̃0z0 þ ã1z
2
0z0 þ ã2z0z1z1 þOððjz0j þ jz1jÞ

5
Þ, (38)

z01 ¼ l̃1z1 þ b̃1z0z0z1 þ b̃2z21z1 þOððjz0j þ jz1jÞ
5
Þ, (39)

where the coefficients ã1, ã2, b̃1, b̃2 are shown in Refs. [25,26] in detail. Due to P ¼ Q2
g , the normal form of the

Poincaré map P near Hopf–Hopf bifurcation point is the second iteration of Eqs. (38) and (39), which can be
written as

z00 ¼ l0z0 þ a1z
2
0z0 þ a2z0z1z1 þOððjz0j þ jz1jÞ

5
Þ, (40)

z01 ¼ l1z1 þ b1z0z0z1 þ b2z21z1 þOððjz0j þ jz1jÞ
5
Þ, (41)

where

l0 ¼ l̃
2

0; l1 ¼ l̃
2

1; a01 ¼ a1l̃0ð1þ l̃0l̃0Þ,

a2 ¼ ã2l̃0ð1þ l̃1l̃1Þ; b1 ¼ b̃1l̃1ð1þ l̃0l̃0Þ; b2 ¼ b̃2l̃1ð1þ l̃1l̃1Þ. (42)
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Eqs. (38)–(42) show that for Hopf–Hopf bifurcation, the normal form of the Poincarémap P is same to that
of the map Qg, but the coefficients of the associated normal form are different, which will make the different
area bound in the two-parameter unfolding portraits near Hopf–Hopf bifurcation.

6.2. Hopf bifurcation in the case of 1:2 resonance

Since Hopf bifurcation of Qg satisfying 1:4 resonant conditions corresponds to Hopf bifurcation of P

satisfying 1:2 resonant conditions, then firstly we consider the normal form of Hopf bifurcation of Qg

satisfying 1:4 resonant conditions. If the Jacobi matrix DQgðm; 0Þ of Qg at m ¼ mc satisfy

(H.1) DQgðm; 0Þ has a pairs of complex conjugate eigenvalues on the unit circle: l̃0; l̃0 ¼ e�iỹ0 , and all other

eigenvalues of DQgðm; 0Þ lie in the unit circle;

(H.2) ql̃0ðmcÞ=qm1a0 and ql̃0ðmcÞ=qm2a0, which is the transversal condition for the two-parameter family;

(H.3) l̃
4

0ðmcÞ ¼ 1 and l̃0ðmcÞa� 1, then the normal form of Hopf bifurcation of Qg in 1:4 resonant case can

be expressed as [20]

Fmðz; zÞ ¼ l̃ðmÞzþ ãðmÞz2zþ b̃ðmÞz3 þOðjzj5Þ, (43)

where

ãð0Þ ¼
g21

2
þ
jg02j

2

2ðl̃
2

0 � l̃0Þ
þ
jg11j

2

1� l̃0
þ

g11g20ð1� 2l̃0Þ

2ðl̃
2

0 � l̃0Þ
, (44)

b̃ð0Þ ¼
g03

6
þ

g02ðg11 þ 2g20Þ

2ð ¯̃l
2

0 � l̃0Þ
, (45)

where the coefficients gij are shown in Ref. [20]. The normal form of the map P is the second iteration of
Eqs. (43), which takes the form

Fmðz; zÞ ¼ lðmÞzþ aðmÞz2zþ bðmÞz3 þOðjzj5Þ, (46)

where

lðmÞ ¼ l̃
2
ðmÞ; aðmÞ ¼ ãðmÞl̃ðmÞð1þ l̃ðmÞl̃ðmÞÞ,

bðmÞ ¼ b̃ðmÞðl̃ðmÞ þ l̃
3

ðmÞÞ. (47)

7. Numerical bifurcation analysis

7.1. Hopf bifurcation of the symmetric fixed point

The vibro-impact system with system parameters (1): n ¼ 1, z ¼ 0.00166, zp ¼ 0.008, o ¼ 3.88, R ¼ 0.8,
h ¼ 0.08, um1 ¼ 0.767, um2 ¼ 2, uk1 ¼ 1, uk2 ¼ 1, uf1 ¼ 2, uf2 ¼ 1, are considered, and the forcing frequency o
is taken as a control parameter. For o ¼ oc2 ¼ 2:06777911, the six eigenvalues of DP(X0) and their moduli
can be given as:

l1;2 ¼ �0:999124� 0:046103i; jl1;2j ¼ 1:000187; l3;4 ¼ 0:613510� 0:789685i,

jl3;4j ¼ 0:999999; l5;6 ¼ �0:392817� 0:461321i; jl5;6j ¼ 0:605906.

There is a pair of complex conjugate eigenvalues crossing the unit circle, and the remainder of the spectrum of
DP(X0) lie inside the unit circle, hence oc2 is the critical value of Hopf bifurcation. As o increases to
o ¼ 2.075, Hopf bifurcation takes place, and the symmetric fixed point evolves into an invariant circle, see
Fig. 3.
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Fig. 3. Phase diagrams in projected Poincaré section: invariant circle bifurcated from the symmetric fixed point via Hopf bifurcation,

o ¼ 2.075, 200 000 iterations. (a): (t;x1) plane; (b): (x1; y1) plane.

Fig. 4. Phase diagrams in projected Poincaré section: torus T2 bifurcated from the symmetric fixed point via Hopf–Hopf bifurcation,

plotting 50 000 points after 300 000 iterations. (a) (t; x2) plane; (b) (x2; y2) plane.
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7.2. Hopf– Hopf bifurcation of the symmetric fixed point

First we still consider system parameters (1), and choose z and um1 as the two control parameters. Changing the
values of z and um1 simultaneously, we can obtain the critical point of Hopf–Hopf bifurcation. When z ¼ 0.0016582
and um1 ¼ 0.76764, the six eigenvalues of Jacobi matrix DP(X0) and their moduli can be given as follows:

l1;2 ¼ 0:61367422� 0:78955938i; jl1;2j ¼ 1:00000004; l3;4 ¼ �0:39252793� 0:46175906i,

jl3;4j ¼ 0:60605248; l5;6 ¼ �0:99885430� 0:04785517i; jl5;6j ¼ 1:00000002.

There are two pairs of complex conjugate eigenvalues escaping from the unit circle simultaneously. Hence,
Hopf–Hopf bifurcation of the symmetric fixed point takes place, and the symmetric fixed point bifurcates into an
invariant torus T2, as shown in Fig. 4.

As the second example, the system parameters (2): n ¼ 1, zp ¼ 0.002274295, R ¼ 0.8, h ¼ 0.2, um1 ¼ 1.5,
um2 ¼ 2.8, uk1 ¼ 1.2, uk2 ¼ 1, uf1 ¼ 1.8, uf2 ¼ 0.6 are chosen for analysis, and z and o are chosen as the two
control parameters. When z ¼ zc ¼ 0:012, o ¼ oc ¼ 2:99793, the six eigenvalues of Jacobi matrix DP(X0) and
their moduli can be given as:

l1;2 ¼ 0:60621811� 0:79529846i; jl1;2j ¼ 1:00000002; l3;4 ¼ �0:94524483� 0:32636215i,

jl3;4j ¼ 1:00000003; l5;6 ¼ �0:38495827� 0:48390611i; jl5;6j ¼ 0:61835103.
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Fig. 5. Phase diagrams in projected Poincaré section: torus T2 bifurcated from the symmetric fixed point via Hopf–Hopf bifurcation. (a)

600 000 iterations; (b) plotting 100 000 points after 600 000 iterations.
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There are two pairs of complex conjugate eigenvalues escaping from the unit circle simultaneously, hence zc

and oc are the two critical parameter values of Hopf–Hopf bifurcation. When z and o vary near the critical
parameter values, invariant torus T2 can be obtained. For example, when z ¼ zc � 0:00008 and
o ¼ oc � 0:001, there is an invariant torus T2 bifurcated from the symmetric fixed point, as shown in Fig. 5.
7.3. Hopf bifurcation in 1:2 resonant case

Now we consider system parameters (3): n ¼ 1, zp ¼ 0.005, R ¼ 0.8, h ¼ 0.05, um1 ¼ 0.6, um2 ¼ 3, uk1 ¼ 0.8,
uk2 ¼ 1.5, uf1 ¼ 1, uf2 ¼ 2, and z and o are taken as two bifurcation parameters. With z ¼ 0.015 and o ¼ 3.38,
the six eigenvalues of Jacobi matrix DP(X0) and their moduli are

l1;2 ¼ �1:0098� 0:0120i; jl1;2j ¼ 1:0099; l3;4 ¼ 0:4919� 0:8659i,

jl3;4j ¼ 0:9959; l5;6 ¼ �0:5156� 0:3093i; jl5;6j ¼ 0:6013.

there are a pair of conjugate complex eigenvalues l1,2 escaping the unit circle near the point (�1,0), hence the
iteration of P will exhibit the characteristic of 1:2 resonance. With small perturbation, the unstable symmetric
fixed point bifurcates into a circle from two directions, as shown in Fig. 6(a). However, for the map Qg, the 1:4
resonant condition is satisfied, and the unstable symmetric fixed point bifurcates into the same circle from four
directions, as shown in Fig. 6(b). It is interesting that the Hopf circle in Fig. 6(a) and (b) is unstable, and will
evolve into torus T2 finally with increasing iteration number, as shown in Fig. 6(c) and (d). It is clear that the
evolvement sequence is: unstable symmetric fixed point-unstable circle-stable torus T2. Here the original
purpose of our study is aimed at the 1:2 resonance of the map P, but the phase portrait in projected Poincare
section exhibits both the characteristic of 1:2 resonance and that of torus T2. The reason for this is that there
are another pair of conjugate complex eigenvalues l3,4 close to the unit circle. At the same time, the phase
portrait of the map Qg exhibits both the characteristic of 1:4 resonance and that of torus T

2, as shown in
Fig. 6(d). Fig. 6(e) and (f) represent the final stable torus of the map P andQg, respectively. It is shown that the
curve density on the torus of the map Qg is double of that on the torus of the map P, which is caused by
P ¼ Q2

g and QgðXÞaX.
With z ¼ 0.007 and o ¼ 3.365, two stable isolated circles appear in the Poincaré section of the map P, which

reflects also the characteristic of 1:2 resonance of the map P, as shown in Fig. 7(a) and (b). The evolvement
sequence is: an unstable symmetric fixed point-an unstable circle-two stable isolated circles, and the two
stable isolated circles correspond to 2�T1 torus in phase space. However, for the map Qg, four isolated circles
appear, which reflects the characteristic of 1:4 resonance of the map Qg, as shown in Fig. 7(c) and (d). The
evolvement sequence is: an unstable symmetric fixed point-an unstable circle-four stable isolated circles,
and the four stable isolated circles correspond to 4�T1 torus in phase space.
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Fig. 6. Phase diagrams in projected Poincaré section: coexistence of an unstable circle and a stable torus: (a), (c) and (e), the map P, where

(a) 7500 iterations, (c) 150 000 iterations, (e) plotting 20 000 points after 150 000 iterations; (b), (d) and (f), the map Qg, where (b) 15 000

iterations, (d) 300 000 iterations, (f) plotting 40 000 points after 300 000 iterations.
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8. Conclusions

For the three-degree-of-freedom (3-dof), vibro-impact system with symmetric two-sided constraints, it is
certain that the Poincaré map has some symmetry property, which suppresses period-doubling bifurcation,
Hopf–flip bifurcation and pitchfork–flip bifurcation of the symmetric period n�2 motion.

Due to the symmetric property, the Poincaré map P can be expressed as the second iteration of another
implicit map Qg, and Qg has no symmetry. Consequently, Hopf–Hopf bifurcation and Hopf bifurcation
satisfying 1:2 resonance conditions of the Poincaré map P correspond to Hopf–Hopf bifurcation and Hopf
bifurcation satisfying 1:4 resonance conditions of the map Qg, respectively. It is shown that for the
corresponding codimension two bifurcation, the normal form of the Poincaré map P are same to that of the
map Qg, but the coefficients of the normal map are different. Since P is a composition of four sub-maps and
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Fig. 7. Phase diagrams in projected Poincaré section: two stable isolated circles for the map P and four stable isolated circles for the map

Qg. (a) P, 60 000 iterations; (b) P, plotting 30 000 points after 60 000 iterations; (c) Qg, 60 000 iterations; (d) Qg, plotting 30 000 points after

60 000 iterations.
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Qg is a composition of two sub-maps, the method of computing the normal forms of P via Qg is more brief
than that via P itself.

Under some parameter combination, the Poincarémap P of the system can exhibit both the characteristic of
1:2 resonance and that of torus T2. The reason for this is that there are a pair of conjugate complex eigenvalues
escaping from the unit circle near the point (�1,0) and another pair of conjugate complex eigenvalues close to
the unit circle at the same time. By numerical simulations, we also obtain 2�T1 torus of map P, which
corresponds to 4�T1 torus of map Qg.

The vibro-impact system with symmetric constraints considered in the paper has characteristics as follows:
(a) the coefficient of restitution at the right stop is same to that at the left stop; (b) between any two
consecutive impacts, the non-dimensional vibration equation _X ¼ FðX; tÞ satisfy FðX; tÞ ¼ FðX; tþ ð2p=oÞÞ
and FðX; tÞ ¼ �Fð�X; tþ ðp=oÞÞ (i.e., Eqs. (12) and (13) stand), where o denotes the non-dimensional
excitation frequency. If only the above two conditions are satisfied, the methods presented in Section 4 can be
applied to other multi-degree-of-freedom vibro-impact systems with two-sided constraints. Hence, the
symmetry of Poincarémap can be deduced subsequently, and the other conclusions presented in this paper are
also effective for this kind of vibro-impact systems with symmetric two-sided constraints. This kind of vibro-
impact systems is also called symmetric vibro-impact system in our studies.
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Appendix A. The phase angle and the integration constants

t0 ¼
2 tan�1

Smn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

mn þ C2
mn � h2

mn

q
Cmn � hmn

0
@

1
A; hmnaCmn;

2 tan�1 �
hmn þ Cmn

2Smn

� �
; hmn ¼ Cmn;

8>>>>><
>>>>>:

(A.1)

a1 ¼
�mc cos t0 �ms sin t0 �mh

ma

, (A.2)

a2 ¼
jU j

jGj
a1, (A.3)

a3 ¼ po4a1 þ do4 cos t0 þ f o4 sin t0 þ
h

o4
, (A.4)

b1 ¼
jQj

jGj
a1, (A.5)

b2 ¼
jV j

jGj
a1, (A.6)

b3 ¼ pog3a1 þ dog3 cos t0 þ f og3 sin t0 þ h3, (A.7)

where

Cmn ¼ mcna � ncma; Smn ¼ msna � nsma; hmn ¼ mhna � nhma, (A.8)

ma ¼ p6 þ q6qg þ u6ug þ v6vg þ o6po4 þ g6pog3,

mc ¼ o6do4 þ g6dog3 þ d6; ms ¼ o6f o4 þ g6dog3 þ f 6; mh ¼
o6h

o4
þ g6h3 (A.9)

na ¼ p7 þ q7qg þ u7ug þ v7vg þ o7po4 þ g7pog3,

nc ¼ o7do4 þ g7dog3 þ d7; ns ¼ o7f o4 þ g7dog3 þ f 7; mh ¼
o7h

o4
þ g7h3, (A.10)

G ¼

q1 u1 v1

q2 u2 v2

q5 u5 v5

2
64

3
75,

Q ¼

�p1 u1 v1

�p2 u2 v2

�p5 u5 v5

2
64

3
75; U ¼

q1 �p1 v1

q2 �p2 v2

q5 �p5 v5

2
64

3
75; V ¼

q1 u1 �p1

q2 u2 �p2

q5 u5 �p5

2
64

3
75, (A.11)

po4 ¼ �
p4 þ u4ug

o4
; do4 ¼ �

d4

o4
; f o4 ¼ �

f 4

o4
, (A.12)

pog3 ¼ �
o3

g3

po4; dog3 ¼ �
o3

g3

do4; f og3 ¼ �
o3

g3

f o4; h3 ¼ �
o3

o4g3

h, (A.13)
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where

p1 ¼ c11ð1þ e1 cosðod1t1ÞÞ; q1 ¼ c11e1 sinðod1t1Þ,

u1 ¼ c12ð1þ e2 cosðod2t1ÞÞ; v1 ¼ c12e2 sinðod2t1Þ, (A.14)

p2 ¼ c21ð1þ e1 cosðod1t1ÞÞ; q2 ¼ c21e1 sinðod1t1Þ,

u2 ¼ c22ð1þ e2 cosðod2t1ÞÞ; v2 ¼ c22e2 sinðod2t1Þ, (A.15)

o3 ¼ 1þ e3 cosðod3t1Þ; g3 ¼ e3 sinðod3t1Þ, (A.16)

p4 ¼ c21; u4 ¼ c22; o4 ¼ �1; f 4 ¼ c21A1 þ c22A2 � A3; d4 ¼ c21B1 þ c22B2 � B3, (A.17)

p5 ¼ c11Z1 þ c11e1ðZ1 cosðod1t1Þ þ od1 sinðod1t1ÞÞ,

q5 ¼ �c11od1 � c11e1ðod1 cosðod1t1Þ � Z1 sinðod1t1ÞÞ,

u5 ¼ c12Z2 þ c12e2ðZ2 cosðod2t1Þ þ od2 sinðod2t1ÞÞ,

v5 ¼ �c12od2 � c12e2ðod2 cosðod2t1Þ � Z2 sinðod2t1ÞÞ, (A.18)

p6 ¼ c21Z1 þm1c21e1ðZ1 cosðod1t1Þ þ od1 sinðod1t1ÞÞ,

q6 ¼ �c21od1 �m1c21e1ðod1 cosðod1t1Þ � Z1 sinðod1t1ÞÞ,

u6 ¼ c22Z2 þm1c22e2ðZ2 cosðod2t1Þ þ od2 sinðod2t1ÞÞ,

v6 ¼ �c22od2 �m1c22e2ðod2 cosðod2t1Þ � Z2 sinðod2t1ÞÞ,

o6 ¼ n1e3ðZ3 cosðod3t1Þ þ od3 sinðod3t1ÞÞ,

g6 ¼ �n1e3ðod3 cosðod3t1Þ � Z3 sinðod3t1ÞÞ,

d6 ¼ ð�c21A1 � c22A2 þm1c21A1 þm1c22A2 þ n1A3Þo,

f 6 ¼ ðc21B1 þ c22B2 �m1c21B1 �m1c22B2 � n1B3Þo, (A.19)

p7 ¼ m2c21e1ðZ1 cosðod1t1Þ þ od1 sinðod1t1ÞÞ,

q7 ¼ �m2c21e1ðod1 cosðod1t1Þ � Z1 sinðod1t1ÞÞ,

u7 ¼ m2c22e2ðZ2 cosðod2t1Þ þ od2 sinðod2t1ÞÞ,

v7 ¼ �m2c22e2ðod2 cosðod2t1Þ � Z2 sinðod2t1ÞÞ,

o7 ¼ Z3 þ n2e3ðZ3 cosðod3t1Þ þ od3 sinðod3t1ÞÞ,

g7 ¼ �od3 � n2e3ðod3 cosðod3t1Þ � Z3 sinðod3t1ÞÞ,

d7 ¼ ð�A3 þm2c21A1 þm2c22A2 þ n2A3Þo,

f 7 ¼ ðB3 �m2c21B1 �m2c22B2 � n2B3Þo, (A.20)

where

ei ¼ e�Zi t1 ; t1 ¼
np
o

. (A.21)
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Appendix B. The integration constants aij and bij determined by the initial conditions after impacting

Let the initial conditions be x10, _x10, x20, _x20, _x30, t0, the integration constants aij and bij can be expressed as

a11 ¼ Ua1 sin t0 þ Va1 cos t0 þ Pa1x10 þQa1x20;

a21 ¼ Ua2 sin t0 þ Va2 cos t0 þ Pa2x10 þQa2x20;

a31 ¼ Ua3 sin t0 þ Va3 cos t0 þ Pa3x10 þQa3x20 � h;

b11 ¼ Ub1 sin t0 þ Vb1 cos t0 þ Pb1x10 þQb1x20 þMb1 _x10 þNb1 _x20;

b21 ¼ Ub2 sin t0 þ Vb2 cos t0 þ Pb2x10 þQb2x20 þMb2 _x10 þNb2 _x20;

b31 ¼ Ub3 sin t0 þ Vb3 cos t0 þ Pb3x10 þQb3x20 þMb3 _x30 �
Z3h

od3
;

9>>>>>>>>>>>=
>>>>>>>>>>>;

(B.1)

a12 ¼ Ua1 sin t00 þ Va1 cos t00 þ Pa1x010 þQa1x
0
20;

a22 ¼ Ua2 sin t00 þ Va2 cos t00 þ Pa2x010 þQa2x
0
20;

a32 ¼ Ua3 sin t00 þ Va3 cos t00 þ Pa3x010 þQa3x
0
20 þ h;

b12 ¼ Ub1 sin t00 þ Vb1 cos t00 þ Pb1x010 þQb1x
0
20 þMb1 _x

0
10 þNb1 _x

0
20;

b22 ¼ Ub2 sin t00 þ Vb2 cos t00 þ Pb2x010 þQb2x
0
20 þMb2 _x

0
10 þNb2 _x

0
20;

b32 ¼ Ub3 sin t00 þ Vb3 cos t00 þ Pb3x010 þQb3x
0
20 þMb3 _x

0
30 þ

Z3h

od3
;

9>>>>>>>>>>>=
>>>>>>>>>>>;

(B.2)

where

ðx010; _x
0
10;x

0
20; _x

0
20; _x

0
30; t

0
0Þ ¼ ð�x10;� _x10;�x20;� _x20;� _x30; t0 þ npÞ, (B.3)

Ua1 ¼
usa1

jDaj
; Va1 ¼

vca1

jDaj
; Pa1 ¼

c22

jDaj
; Qa1 ¼ �

c12

jDaj
, (B.4)

Ua2 ¼
usa2

jDaj
; Va2 ¼

vca2

jDaj
; Pa2 ¼ �

c21

jDaj
; Qa2 ¼

c11

jDaj
; (B.5)

Ua3 ¼ c21Ua1 þ c21A1 þ c22A2 � A3; Va3 ¼ c21Va1 þ c21B1 þ c22B2 � B3,

Pa3 ¼ c21Pa1 þ c22Pa2; Qa3 ¼ c21Qa1 þ c22Qa2 (B.6)

Ub1 ¼
usb1

jDbj
; V b1 ¼

vcb1

jDbj
; Pb1 ¼

pxb1

jDbj
; Qb1 ¼ �

qxb1

jDbj
; Mb1 ¼

mxb1

jDbj
; Nb1 ¼

nxb1

jDbj
, (B.7)

Ub2 ¼
usb2

jDbj
; V b2 ¼

vcb2

jDbj
; Pb2 ¼

pxb2

jDbj
; Qb2 ¼ �

qxb2

jDbj
; Mb2 ¼

mxb2

jDbj
; Nb2 ¼

nxb2

jDbj
, (B.8)

Ub3 ¼
Z3Ua3 þ B3o

od3
; V b3 ¼

Z3V a3 � A3o
od3

; Pb3 ¼
Z3Pa3

od3
; Qb3 ¼

Z3Qa3

od3
; Mb3 ¼

1

od3
, (B.9)

where

Da ¼ c; Db ¼
c11od1 c12od2

c21od1 c22od2

" #
, (B.10)

usa1 ¼ c12ðc21A1 þ c22A2Þ � c22ðc11A1 þ c12A2Þ,

vca1 ¼ c12ðc21B1 þ c22B2Þ � c22ðc11B1 þ c12B2Þ, (B.11)

usa2 ¼ c22ðc11A1 þ c12A2Þ � c11ðc21A1 þ c22A2Þ,
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vca2 ¼ c21ðc11B1 þ c12B2Þ � c11ðc21B1 þ c22B2Þ, (B.12)

usb1 ¼ c22od2us1 � c12od2us2; vcb1 ¼ c22od2vs1 � c12od2vs2,

pxb1 ¼ c22od2ps1 � c12od2ps2; qxb1 ¼ c22od2qs1 � c12od2qs2,

mxb1 ¼ c22od2; nxb1 ¼ �c12od2, (B.13)

usb2 ¼ c11od1us2 � c21od1us1; vcb2 ¼ c11od1vs2 � c21od1vs1,

pxb2 ¼ c11od1ps2 � c21od1ps1; qxb2 ¼ c11od1qs2 � c21od1qs1,

mxb2 ¼ �c21od1; nxb2 ¼ c11od1, (B.14)

where

us1 ¼ c11Z1Ua1 þ c12Z2Ua2 þ c11B1oþ c12B2o,

vs1 ¼ c11Z1V a1 þ c12Z2V a2 � c11A1o� c12A2o,

ps1 ¼ c11Z1Pa1 þ c12Z2Pa2; qs1 ¼ c11Z1qa1 þ c12Z2qa2, (B.15)

us2 ¼ c21Z1Ua1 þ c22Z2Ua2 þ c21B1oþ c22B2o,

vs2 ¼ c21Z1V a1 þ c22Z2V a2 � c21A1o� c22A2o,

ps2 ¼ c21Z1Pa1 þ c22Z2Pa2; qs2 ¼ c21Z1qa1 þ c22Z2qa2. (B.16)

Appendix C. The entries of the matrix DP1

d11 ¼ p1a1a1x1 þ p1a2a2x1 þ p1b1b1x1 þ p1b2b2x1 þ p1ttx1,

d12 ¼ p1b1b1xd1 þ p1b2b2xd1 þ p1ttxd1,

d13 ¼ p1a1a1x2 þ p1a2a2x2 þ p1b1b1x2 þ p1b2b2x2 þ p1ttx2,

d14 ¼ p1b1b1xd2 þ p1b2b2xd2 þ p1ttxd2,

d15 ¼ p1ttxd3,

d16 ¼ p1a1a1t þ p1a2a2t þ p1b1b1t þ p1b2b2t þ p1ttt þ
X2
j¼1

c1jðAj cosðotþ tÞ � Bj sinðotþ tÞÞ, (C.1)

d21 ¼ p1a1a1x1 þ p2a2a2x1 þ p2b1b1x1 þ p2b2b2x1 þ p2ttx1,

d22 ¼ p2b1b1xd1 þ p2b2b2xd1 þ p2ttxd1,

d23 ¼ p2a1a1x2 þ p2a2a2x2 þ p2b1b1x2 þ p2b2b2x2 þ p2ttx2,

d24 ¼ p2b1b1xd2 þ p2b2b2xd2 þ p2ttxd2,

d25 ¼ p2ttxd3,

d26 ¼ p2a1a1t þ p2a2a2t þ p2b1b1t þ p2b2b2t þ p2ttt þ
X2
j¼1

c1joð�Aj sinðotþ tÞ � Bj cosðotþ tÞÞ, (C.2)
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d31 ¼ p3a1a1x1 þ p3a2a2x1 þ p3b1b1x1 þ p3b2b2x1 þ p3ttx1,

d32 ¼ p3b1b1xd1 þ p3b2b2xd1 þ p3ttxd1,

d33 ¼ p3a1a1x2 þ p3a2a2x2 þ p3b1b1x2 þ p3b2b2x2 þ p3ttx2,

d34 ¼ p3b1b1xd2 þ p3b2b2xd2 þ p3ttxd2,

d35 ¼ p3ttxd3,

d36 ¼ p3a1a1t þ p3a2a2t þ p3b1b1t þ p3b2b2t þ p3ttt þ
X2
j¼1

c2jðAj cosðotþ tÞ � Bj sinðotþ tÞÞ, (C.3)

d41 ¼ p4a1a1x1 þ p4a2a2x1 þ p4b1b1x1 þ p4b2b2x1 þ p4ttx1,

d42 ¼ p4b1b1xd1 þ p4b2b2xd1 þ p4ttxd1,

d43 ¼ p4a1a1x2 þ p4a2a2x2 þ p4b1b1x2 þ p4b2b2x2 þ p4ttx2,

d44 ¼ p4b1b1xd2 þ p4b2b2xd2 þ p4ttxd2,

d45 ¼ p4ttxd3,

d46 ¼ p4a1a1t þ p4a2a2t þ p4b1b1t þ p4b2b2t þ p4ttt þ
X2
j¼1

c2joð�Aj sinðotþ tÞ � Bj cosðotþ tÞÞ, (C.4)

d51 ¼ p5a3a3x1 þ p5b3b3x1 þ p5ttx1; d52 ¼ p5ttxd1; d53 ¼ p5a3a3x2 þ p5b3b3x2 þ p5ttx2,

d54 ¼ p5ttxd2; d55 ¼ p5b3b3xd3 þ p5ttxd3,

d56 ¼ p5a3a3t þ p5b3b3t þ p5ttt � A3oðsinðotþ tÞ � B3o cosðotþ tÞÞ, (C.5)

d61 ¼ otx1; d62 ¼ otxd1; d63 ¼ otx2; d64 ¼ otxd2; d65 ¼ otxd3; d66 ¼ 1þ ott, (C.6)

where

a1x1 ¼ Pa1; a2x1 ¼ Pa2; a3x1 ¼ Pa3; b1x1 ¼ Pb1; b2x1 ¼ Pb2; b3x1 ¼ Pb3

a1x2 ¼ Qa1; a2x2 ¼ Qa2; a3x2 ¼ Qa3; b1x2 ¼ Qb1; b2x2 ¼ Qb2; b3x2 ¼ Qb3,

b1xd1 ¼Mb1; b2xd1 ¼Mb2; b1xd2 ¼ Nb1; b2xd2 ¼ Nb2; b3xd2 ¼Mb3

a1t ¼ Ua1 cos t� Va1 sin t; a2t ¼ Ua2 cos t� V a2 sin t; a3t ¼ Ua3 cos t� V a3 sin t,

b1t ¼ Ub1 cos t� V b1 sin t; b2t ¼ Ub2 cos t� V b2 sin t; b3t ¼ Ub3 cos t� V b3 sin t, (C.7)

p1a1 ¼ c11e1 cosðod1tÞ; p1a2 ¼ c12e2 cosðod2tÞ,

p1b1 ¼ c11e1 sinðod1tÞ; p1b2 ¼ c12e2 sinðod2tÞ, (C.8)

tx1 ¼ �
Gx1

Gt

; txd1 ¼ �
Gxd1

Gt

; tx2 ¼ �
Gx2

Gt

; txd2 ¼ �
Gxd2

Gt

; txd3 ¼ �
Gxd3

Gt

; tt ¼ �
Gt

Gt
, (C.9)

p1t ¼
X2
j¼1

c1jðejðð�Zjaj þ bjodjÞ cosðodjtÞ � ðZjbj þ ajodjÞ sinðodjtÞÞ þ Ajo cosðotþ tÞ � Bjo sinðotþ tÞÞ,

(C.10)
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p2t ¼
X2
j¼1

c1jðejððZ2j aj � 2Zjodjbj � o2
djajÞ cosðodjtÞ

þ ðZ2j bj þ 2Zjodjaj � o2
djbjÞ sinðodjtÞÞ � Ajo2 sinðotþ tÞ � Bjo2 cosðotþ tÞÞ, (C.11)

p3t ¼
X2
j¼1

c2jðejðð�Zjaj þ bjodjÞ cosðodjtÞ

� ðZjbj þ ajodjÞ sinðodjtÞÞ þ Ajo cosðotþ tÞ � Bjo sinðotþ tÞÞ, (C.12)

p4t ¼
X2
j¼1

c2jðejððZ2j aj � 2Zjodjbj � o2
djajÞ cosðodjtÞ

þ ðZ2j bj þ 2Zjodjaj � o2
djbjÞ sinðodjtÞÞ � Ajo2 sinðotþ tÞ � Bjo2 cosðotþ tÞÞ, (C.13)

p5t ¼ e3ððZ23a3 � 2Z3od3b3 � o2
d3a3Þ cosðod3tÞ

þ ðZ23b3 þ 2Z3od3a3 � o2
d3b3Þ sinðod3tÞÞ � A3o2 sinðotþ tÞ � B3o2 cosðotþ tÞÞ, (C.14)

where

Gx1 ¼ Ga1a1x1 þ Ga2a2x1 þ Ga3a3x1 þ Gb1b1x1 þ Gb2b2x1 þ Gb3b3x1,

Gxd1 ¼ Gb1b1xd1 þ Gb2b2xd1,

Gx2 ¼ Ga1a1x2 þ Ga2a2x2 þ Ga3a3x2 þ Gb1b1x2 þ Gb2b2x2 þ Gb3b3x2,

Gxd2 ¼ Gb1b1xd2 þ Gb2b2xd2,

Gxd3 ¼ Gb3b3xd3, (C.15)

Gt ¼
X2
j¼1

c2jðejðð�Zjaj þ bjodjÞ cosðodjtÞ � ðZjbj þ ajodjÞ sinðodjtÞÞ

þ Ajo cosðotþ tÞ � Bjo sinðotþ tÞÞ � ðe3ð�Z3a3 þ b3od3Þ cosðod3tÞ

� ðZ3b3 þ a3od3Þ sinðod3tÞÞ þ A3o cosðotþ tÞ � B3o sinðotþ tÞÞ, (C.16)

Gt ¼
X2
j¼1

c2jðejðajt cosðodjtÞ þ bjt sinðodjtÞÞ þ Aj cosðotþ tÞ � Bj sinðotþ tÞÞ

� ðe3ða3t cosðod3tÞ þ b3t sinðod3tÞÞ þ A3 cosðotþ tÞ � B3 sinðotþ tÞÞ, (C.17)

where

Ga1 ¼ c21e1 cosðod1tÞ; Ga2 ¼ c22e2 cosðod2tÞ; Ga3 ¼ �e3 cosðod3tÞ, (C.18)

Gb1 ¼ c21e1 sinðod1tÞ; Gb2 ¼ c22e2 sinðod2tÞ; Gb3 ¼ �e3 sinðod3tÞ. (C.19)
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